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BSC-CNS is the Barcelona Supercomputing Center – 
Centro Nacional de Supercomputación, the Spanish 
national supercomputing center 

Director: Prof. Mateo Valero

Established in 2005. Upgrades the former parallelisation 
research center CEPBA

It is a public center, co-financed by the Spanish 
Ministry of Science, the regional government of Catalonia 
and the UPC (Technical University of Catalonia)

Barcelona Supercomputing Center
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Around 500 researchers from several disciplines

It hosts the MareNostrum, former largest European 
supercomputer (2005 and 2007), former 4th and 5th in 
the World.

Manage the Spanish Supercomputing Network 
(RES)

Tier 0 of PRACE-IP European supercomputing 
infrastructure project

Barcelona Supercomputing Center
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Barcelona Supercomputing Center
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Barcelona Supercomputing Center
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BSC-CNS Research Departments

Computer Science

Performance tools

Computer architectures

Programming models

Earth Science

Air quality

Climate

Life Science

Genomics

Proteomics

Computer Applications in 
Science and Engineering

CASE
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CASE Department - Objectives

Computer Applications in Science 

and Engineering (CASE) Department

Computational Physics and Engineering 

Interdisciplinary research unit of 

the BSC-CNS

Our mission:

To develop computational tools to simulate highly complex problems 

seamlessly adapted to run onto high-end parallel supercomputers

Around 90 researchers:

Post-docs, students, programmers

Computer Science, Physicists, Mathematicians, Engineers 
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Research lines

Physical and Numerical Modeling 

Numerical Solution Algorithms: from stabilisation to solvers

Multi-physics and multi-scale coupling

High Performance Computing in CM (HPCM)

Parallelisation in Distributed and Shared memory machines

Mesh Generation 

Scientific Visualisation & Big Data

Optimisation
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Application lines

Environment

Energy 

Aerospace

Trains and Automotive 

Oil and Gas

Smart Cities

High Energy Physics

Materials Sciences

Biomechanics
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Physics

Computer Science Mathematics

CASE Department Action

Research in Computational 
Physics and Engineering
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Understand the 
problem

Write a program Develop a simulation 
model

CASE Department Action

Research in Computational 
Physics and Engineering
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Understand the 
problem

Write a program Develop a simulation 
model

Large Computational 
Resources

CASE Department Action

Research in Computational 
Physics and Engineering



Course Goal:

Show bridges over the gaps between: 

Computer Science and Computational Mechanics

Computational Mechanics and Engineering

Academia and Industry



What is behind a parallel simulation code?

Scarce information on how to program things

Most of the time… no information at all!

You only understand it when you program it.



What is behind a parallel simulation code?

Complex Multi-Physics Applications

The real world



Motivation
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Introduction: Motivation

Mathematical Models:

Governed by Differential Equations...

... Numerically solved

Computer Science:

... and translated in a Computational 
Model

Physical Understanding:

We deal with Physical systems

What is behind a simulation code?
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Oden, Belytschko, Babuska and Hughes (2003):

Theoretical and applied mechanics (TAM) is the branch of applied 
science concerned with the study of mechanical phenomena: the behavior of 
fluids, solids, and complex materials under the actions of forces.[...]

Computational mechanics (CM) is that sub-discipline of TAM concerned 
with the use of computational methods and devices to study events 
governed by the principles of mechanics.

Computational Mechanics:  
A definition as a discipline on its own

High Performance Computational Mechanics:

A CM sub-discipline

Efficient use of HPC resources, no matter the size

Introduction: Motivation



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
r

Computational Science constructs mathematical models and uses computers 
to analyse and solve scientific problems.

Its main products are computer simulations and other forms of computation 
from numerical analysis and theoretical computer science to problems in 
various scientific disciplines.

Shortly, Computational Physics or Computational Engineering

Computational Science or Scientific Computing:  
A definition as a discipline on its own (again)

High Performance Computational Science /Scientific Computing 

Introduction: Motivation
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Introduction: Motivation

Theoretical 
Physics

Experimental 
Physics

The           pillars of Physics2
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Introduction: Motivation

Theoretical 
Physics

Experimental 
Physics

Computational 
Physics

The           pillars of Physics3
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Introduction: Motivation

Theoretical 
Physics

Experimental 
Physics

Computational 
Physics

Physical model definition
Classical, Quantum, Relativistic...

Fluid, solids, electromagnetism, 
gravitation, rigid body...

Experiments and observation
Wind tunnels, particle accelerators, 

meteorology, astrophysics...

Numerical methods and 
programming

Application areas: 
Engineering, Aeronautics, Meteorology, 

Biology, Astrophysics...
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Introduction: Motivation

Mature 

Deep mathematical basis, reliable (not just finite differences)

Very flexible and powerful programming tools (languages, compilers, ...)

The only way to attack some problems (a lot of problems indeed...)

It allows to verify and improve the theory and design new experiments

Large (and growing) computers available

Computational 
Physics
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My own taste… a Physicist’s Manifesto.

Even if you write a code or not, you need to know the basics (the real basics!)

Mathematics, physics and programming are deeply entangled:

Maths: know at least the basics on why and how to interpret what Nature is saying

Physics: understand both ends, i.e., what is the motivation and how a simulation 
project develops, from the beginning to the end

Programming: try to use a “programmer’s mind”. Today, plenty of good tools to 
do it: Matlab, Python, PETSc, … Tutorials, hands-ons, …

Computational Mechanics:  
A course

Introduction: Motivation
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A course

Introduction: Motivation
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A course

Introduction: Motivation

“… and 
programming is 
creating.”
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The Physical System 
and its

Mathematical Description
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Revisiting the definition of CM...

Governed by forces, or more generally by conservation principles. 

Usually modelled by Partial or Ordinary Differential Equations (PDE - ODE) but maybe...

... many of them and coupled (i.e. combustion, species transport... )

... multi-physics (Fluid-structure Interaction -FSI-, multi-scale modelling... )

... non-local phenomena (“all against all” connectivities, infinite speed... )

... design variables exist (optimisation problem)

Usually highly non-linear and highly transient

Usually many of these features appears at the same time... i.e. large problems.

The Physical System
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Either if you use your own code 

or

if you use another one’s code (commercial or open source)

The consequence: know deeply the Physics!

The Physical System
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Physical modeling
Transient vs. Stationary: time step? what’s that? how do I set it?
Incompressible vs. Compressible: Mach number in water? Shock waves?  
RANS vs. LES turbulence models: what scales do I need to solve? application ranges?
Material design: what material do I have to use? 
Fluid-Structure Interaction: is fluid deforming the structure? Transient?
Boltzman, SPH, ...: what is this? what are the limitations? where are they coming from?

The Physical System
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Physical modeling
Transient vs. Stationary: robustness? convergence?
Incompressible vs. Compressible: convergence? discontinuities?
RANS vs. LES turbulence models: how do I couple the problem? convergence?
Material design: what solution scheme? do I have the tangent matrix?
Fluid-Structure Interaction: how do I couple the problem? added mass?
Boltzman, SPH, ...: how do they behave with respect to other methods?

Mathematical modeling
... same as above, but with mathematical perspective
Optimization problem? Adjoint vs. Genetic Algorithms. Surrogate models. 

The Physical System
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Physical modeling
Transient vs. Stationary
Incompressible vs. Compressible
RANS vs. LES turbulence models
Material design
Fluid-Structure Interaction
Boltzman, SPH, ...

Mathematical modeling
... same as above, but with mathematical perspective
Optimization problem? Adjoint vs. Genetic Algorithms

Discretization
FEM, FV, FD, Spectral method, Lattice Boltzmann, Clustering in SPH...
XFEM
Stabilization problems
Time Integration: Explicit - Implicit

The Physical System
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Solution Algorithm
Time advance
Space solver: Direct vs. Iterative
Non-linear solver: Jacobi, Newton...
Preconditioners
Coupling strategies

The Physical System
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Solution Algorithm
Time advance
Space solver: Direct vs. Iterative
Non-linear solver: Jacobi, Newton...
Preconditioners
Coupling strategies

Implementation
FEM, FV, FD, Spectral method
Lattice Boltzmann, Clustering in SPH...
Parallel vs. sequential
OpenMP vs. MPI

The Physical System
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rAll these features strongly condition the method you use:

Solution Algorithm
Time advance
Space solver: Direct vs. Iterative
Non-linear solver: Jacobi, Newton...
Preconditioners
Coupling strategies

Implementation
FEM, FV, FD, Spectral method
Lattice Boltzmann, Clustering in SPH...
Parallel vs. sequential
OpenMP vs. MPI

Validation
How can I be sure of what I am simulating?
Study the application ranges

The Physical System
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The Physical System
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The Physical System
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Conservation Laws come from basic Physical principles

Examples: Mass, Energy, Linear or Angular Momentum, Spin, People...

Based in: 

The Mathematical Description: Conservation Laws

A number of certain evolving quantities

A closed domain

and its boundary

The time interval
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n̂
⌦

@⌦

The quantities flux

Latin index: cartesian dimensions

Greek index: variables that define the system 

Einstein convention on repeated indices

The Integral 
Form (IF)

The Mathematical Description: Conservation Laws
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This equation is the fundamental mathematical interpretation of a 
conservation principle

What do we mean by a conservation principle ? 
Example: persons in this room, money in your pocket...

The principle is basic... what are the conserved quantities is not so basic. What are the 
fluxes is not so basic neither.
Examples: mass, mechanical energy (1st. law of thermodynamics), linear momentum (2nd. 
law of Newton)

Indeterminacies: fluxes definition, quantities meaning, boundary and initial values, material 
properties...

The conservation law gives the idea of how extensive quantities behave

Sources and drains can be included

The system can be divided in parts (volume/surface) and quantities transferred back and 
forth

The Mathematical Description: Conservation Laws

8↵
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If the domain is changing in time, no problem: Reynolds transport theorem

The domain could be extended to the infinite or reduced to infinitesimal

The Mathematical Description: Conservation Laws

@q

↵

@t

+
@F

↵
i (q)

@xi
= 0

8↵

Therefore

8↵

Applying the Gauss theorem, and requiring some continuity properties on the fluxes

Exercise

Exercise
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Systems governed by PDEs coming from conservation principles

Forces, Energy, Mass... + Boundary and initial conditions

Fields of 
unknowns

Fluxes

Sources

The Differential 
Conservative 
Form (DCF)

The Mathematical Description: Differential equations

n̂
⌦

@⌦
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Complex Physics, even for the very simple systems

Complex geometries

Complex numerical issues

Fine resolution in time and space

Coupling

No analytical solutions!

The target:

Systems governed by PDEs coming from conservation principles

Forces, Energy, Mass... + Boundary and initial conditions

The Mathematical Description: Differential equations

The Differential 
Conservative 
Form (DCF)

n̂
⌦

@⌦
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The DCF is not as fundamental as the IF because:

will be scarcely used for getting the analytical solution

passing from IF to DCF involves some doubtful steps

However, we will see that the DCF (and other differential equations derived from IF) is 
very useful to design good numerical methods.

But always keep in mind that the IF lies in the core of every numerical method... let us see 
why...

The Mathematical Description: Differential equations
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“Divide and conquer”

Heavily reducing the dimensionality of the unknowns

Going from time-space continuum to a discrete subset

How to choose this discrete subset lies in the core of Computational Mechanics

Discretising the System
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“Divide and conquer”

Heavily reducing the dimensionality of the unknowns

Going from time-space continuum to a discrete subset

How to choose this discrete subset lies in the core of Computational Mechanics

For instance:

Replace         by           in the original continuum equations

Discretise the physical domain in small cells and solve individual conservation 
problems

Discretise the solution space to find an approximate solution

Discretising the System

@ �
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Finite Differences

Suppose convective and 
diffusive fluxes:

Discretising the System
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The End?
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Case I

Case II: smaller dt
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The Physical System 
and its

Mathematical Description

-II-
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Back to the The Physical System

@q

↵

@t

+
@F

↵
i (q)

@xi
= 0

The Differential 
Conservative 
Form (DCF)

The Integral 
Form (IF)
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Back to the The Physical System

The Differential 
Conservative 
Form (DCF)

The Integral 
Form (IF)Always recall that we started at IF. 

To go from IF to DCF some “more” must be asked 
for…

… meaning that not all solutions of IF accomplish 
DCF!

So let us try to always base our methods in IF
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Back to the The Physical System

This is the conservative form of the differential equation.

It requires that the time derivative of the variable and the divergence of the flux 
exist, we needed to derive it.

The Differential 
Conservative 
Form (DCF)

@q

↵

@t

+ A

↵�
i

@q

�

@xi
= 0

A↵�
i =

@F↵
i

@q�

Using the flux Jacobians, the DCF becomes the DJF:

The Differential 
Jacobian Form 
(DJF)

Where the Jacobians are defined as follows
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@E

@t

+
@

@xi
(uiE) +

@

@xi
(uip� k

@T

@xi
� ⌧ijuj) + ⇢(uigi + r) = 0

@⇢

@t

+
@

@xi
(Ui) = 0

@Uj

@t

+
@

@xi
(uiUj) +

@

@xi
(�ijp� ⌧ij) + ⇢gj = 0

Ui = ⇢ui, E = ⇢(CvT + u2/2)

⌧ij is the viscous stress tensor

are the momentum and the total energy

Back to the The Physical System

Fluid flows:  The Navier-Stokes equations
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Momentum: forces balance

Density: continuity equation

Energy: energy balance

U↵ = (Uj , ⇢, E)

@U

↵

@t

=
@F

↵
i

@xi
+ S

Back to the The Physical System

Fluid flows:  The Navier-Stokes equations
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@q

↵

@t

+ A

↵�
i

@q

�

@xi
= 0

can be re-written as 

and also as

The Mathematical Description

Let us see an example on a complete form of a system.

@q

↵

@t

+
@F

↵
i (q)

@xi
= 0
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For instance, for a 2D problem with 2 variables

The Mathematical Description

Note that: 

There is one A for each space dimension (here only shown for “x”)

The dimensions of  A depends on how many coupled variables you have

@q

↵

@t

+ A

↵�

x

@q

�

@x

+ A

↵�

y

@q

�

@y

= 0@q

↵

@t

+
@F

↵

x

@x

+
@F

↵

y

@y

= 0

A↵

x

� =

0

BB@

@F 1
x

@q1

@F 1
x

@q2
@F 2

x

@q1

@F 2
x

@q2

1

CCAA↵�
i =



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
rRemarks:

Tensors “A” (one for each space dimension) couples in a very explicit way all the 
system equations.

The Mathematical Description

@

@t

✓
q1

q2

◆
+

0

BB@

@F

1
x

@q1

@F

1
x

@q2
@F

2
x

@q1

@F

2
x

@q2

1

CCA

0

B@
@q1

@x

@q2

@x

1

CA +

0

BB@

@F

1
y

@q1

@F

1
y

@q2
@F

2
y

@q1

@F

2
y

@q2

1

CCA

0

B@

@q1

@y

@q2

@y

1

CA = 0
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@xi
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1
Cv⇢

✓
p

@uk

@xk
� ⌧ij

@ui

@xj
� k

@

2
T

@xi@xi

◆
= 0

@E

@t

+
@

@xi

✓
ui(E + p)� uj⌧ij � k

@T

@xi

◆
= 0

E = ⇢(CvT + u2/2)
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DJF comes from DCF so it will be different for each set of variables

For instance, in the Navier - Stokes equations, the heat transport equation can be 
used instead of the total energy one: 

The Mathematical Description
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DJF comes from DCF so it will be different for each set of variables

... which means that the Jacobian form can be defined as coming from either a 
conservative or an non-conservative set of equations.

Forms can be transformed in this way

The Mathematical Description
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The Jacobian tensor “A” couples in a very explicit way the system equations.

Now... what if “A” could be diagonalisable?

The Mathematical Description
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rRemarks:

The Jacobian tensor “A” couples in a very explicit way the system equations.

Now... what if “A” could be diagonalisable?

The system is called hyperbolic if it is diagonalisable with real eigenvalues.

The Mathematical Description

eigenvalues matrix
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The Jacobian tensor “A” couples in a very explicit way the system equations.

The Mathematical Description

R�1AR = ⇤A = R⇤R�1
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rRemarks:

The Jacobian tensor “A” couples in a very explicit way the system equations.

The system is called hyperbolic if it is diagonalisable with real eigenvalues.

If “A” is symmetric, the system is always (symmetric) hyperbolic

If all eigenvalues are different, it is strictly hyperbolic
The solution will become a superposition of linear waves, each one with its own 
characteristic speed, the corresponding eigenvalue:

But maybe we have solved the problem… have we?

       is the change of variables matrix.

The Mathematical Description
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The Jacobian tensor “A” couples in a very explicit way the system equations.

Now... what if “A” could be diagonalisable?

The system could be decoupled… but recall that, 

The Mathematical Description

@q

↵
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@xi

�
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Diagonalization should be done simultaneously for all dimensions…!

This is capital issue for building good numerical methods.
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If the problem is non-linear, “A” could be a very intuitive “linearisator” for an iterative 
scheme:

iteration “n”

iteration “n+1”

Quasilineal form

The Mathematical Description
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@q

n+1

@xi

Remarks:

This is the convective derivative of the quantity “q”:

It is, indeed. But the Jacobian is the Jacobian of the complete flux.

This means that it could include diffusion terms too. 
It is as a “generalised velocity” 
It can include a hyperbolic part and a non-hyperbolic part

Very important: always remember that DJF is derived from IF providing that some 
restrictions on the continuity of the variables...

The Mathematical Description
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Let us study some examples of increasing complexity...

First the simplest one: 1D advection equation

The Mathematical Description
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It represents the convective transport of a quantity

variation if  
don’t move

variation if  
moving

Material 
Derivative

Giving an initial value for “q”, it remains constant if we move following the trajectory

x

t

y
z

trajectory

The Mathematical Description
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The Mathematical Description

Dq

Dt
(X(t), t) = 0
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If you can “reconstruct” the trajectories you solve the problem!

The equation complexity is transferred to the trajectory 
reconstruction.
Think that the “blob” is a rigid body…!

If you know the speed, you know where will the blob be at a certain 
time
Let us consider the 1D problem (partial derivatives replaced by “d”):

dq

dt

+ u

dq

dx

= 0

�u =
dx

dt

Now, suppose the velocity is 
defined as q

x

t
u

The Mathematical Description
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x� x0 = �u (t� t0)
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x = (x0 + u t0)� u t = C � u t

x+ u t = C

q := q(x, t) = q(C � u t, t)

So the trajectory equation is

The Mathematical Description



q := q(x, t) = q(C � u t, t)

dq

dt
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dq

dx
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then, the equation is verified:

C0(x, t = 0)

C1(x1, t1)

x+ at = x0

By defining initial data on one of these curves

data will move unchanged on each of the 
trajectories

x

t

C1(x1, t1)

C0(x, t = 0)

The Mathematical Description
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C1(x1, t1)

then, if you travel horizontally fixing a time “t”, then data (i.e. “q”) will change.

If you do it vertically by fixing a position “x”, data will also change.

But if you do it “in a synchronized way” q does not change.

The x-t description is the Eulerian 
description.

On the other hand, if you travel with the 
particle, data will not change and the 
description is Lagrangian

These trajectories in the space-time are 
the Characteristics x

t

C1(x1, t1)

C0(x, t = 0)

fix time

fix
 s

pa
ce

The Mathematical Description
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dt

ds

= 1 ,

dx

ds

= u

Characteristic curves can be written in parametric form:

The Mathematical Description

Dq

Ds
= 0

This transformation is just a scaling, where “u” 
and “1” are the  scale factors.

This scaling gives the precise gauge by 
enlarging or shortening one or the other axe 
to adjust the curve as a characteristic. 

In this way, we travel with the particle, where

x

t

Dq

Ds

=
dt

ds

dq

dt

+
dx

ds

dq

dx
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(x,t)

Initial distribution is propagated forwards 
without change

q

x

t
u

(x,t)

q(x0,t=0)

The Mathematical Description

x

t

(x,t)

(x0,t=0)

The tracks are the characteristic curves

To know what is “q” at a certain pair (x,t), i.e. 
to solve the problem: 

you identify the characteristic through 
the pair (x,t)

you travel backwards to see the initial 
value of “q”
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The original differential equation determines the 
value of “q” over a characteristic C only from 

values on the same characteristic C.

It means that the value of q for a point (x,t) must come determined only by tracking back 
the characteristic to (xo, to). 

It cannot be determined by all neighboring points, but only by those lying on the 
characteristic. 

This particular set of points where to look for the value of “q” is fixed by the equation.

The Mathematical Description

Dq

Ds
= 0

We can set up now a definition of a characteristic:

x

t

(x,t)

(x0,t=0)
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But what is happening with the blob? 

Why can a change in the time increment arise catastrophic consequences?

If we know the speed, can’t we just move properly the blob?

What is wrong here?

The Mathematical Description
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Let us first study some examples of increasing complexity...

Now, suppose the speed is not constant

The Mathematical Description
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Trajectory integration is not that straightforward, so the solution is not trivially 
found, because it must be discretized somewhat...
However, the same analysis still holds.

Then

dt

ds

= 1 ,

dx

ds

= u(x, t)

Dq

Ds

=
dt

ds

dq

dt

+
dx

ds

dq

dx

Dq

Ds

=
dq

dt

+ u(x, t)
dq

dx

= 0

Which allows us to write

x

t

The Mathematical Description

dq

dt

= �u

dq

dx
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Which means that we can do the 
same procedure, but the 
trajectories are not constant in 
time.

x

t

The Mathematical Description
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+ u(x, t)
dq

dx

= b(x, t)
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The characteristics are the same as before.

However, “q” is different:

q(x(s), t(s)) = q(s) = q(s0) +

Z s

s0

b(x(m), t(m))dm

This means that “q” is progressively deformed (like being “eroded”) due to the 
amount of “b” which accumulates traveling along the characteristic. 

The kind of “erosion” depends on how the source b is defined.

q

x

t
u

The Mathematical Description
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The Mathematical Description

This could give us a hint on what’s happening...
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Now, the problem is non-linear

The Mathematical Description
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+ q

dq

dx
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Dq

Ds
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dt

ds

dq

dt

+
dx

ds

dq

dx

Dq

Ds

=
dt

ds|{z}
1

dq

dt

+
dx

ds|{z}
q

dq

dx

dt

ds

= 1 ,

dx

ds

= q
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Taking the derivatives,

The characteristics are always,

The Mathematical Description

q takes now the 
place of u
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The meaning of characteristics crossing 
is subtle.

Points over the dotted line have 
associated more than one  
characteristic... although there is only 
one unknown.

This means that its value is different 
when coming from one side or from 
the other: it is discontinuous. 

Even if you start with a smooth 
distribution, it can became non-smooth.

Example: the Burgers equation and the 
breaking waves... we will come back to 
this

x

t

q(x,t=0)

The Mathematical Description
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Now, consider a 1D system

The Mathematical Description
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dq

↵

ds

=
dt

ds

dq

↵

dt

+
dx

ds

dq

↵

dx

dq

↵

ds

=
dt

ds

(�A

↵� dq
�

dx

)
| {z }

+
dx

ds

dq

↵

dx

Now let us take derivatives to define the characteristics

from the system 
equation

The Mathematical Description

and recall that along them, this derivative must remain zero. Now
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where

dq

↵

ds

=
dq

�

dx

(�A

↵� dt

ds

+ �

↵� dx

ds

)

Then, we establish a proportionality relation between the two derivatives:

The Mathematical Description
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This is the rate of change following the characteristics, which should be zero.

Recall the definition of characteristics:

The original differential equation determines the 
value of “q” over a characteristic C only from 

values on the same characteristic C.

The Mathematical Description
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It means that the value of q for a point (x,t) must come determined only by tracking 
back the characteristic to (xo, to). 

It cannot be determined by all neighbouring points, but only by those lying on the 
characteristic. 

This particular set of points where to look for the value of “q” is fixed by the equation.

The Mathematical Description

x

t

dq/ds

dq/dxdq
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In other words,  rewriting this expression 
in compact form 

But a variation of “q” w.r.t. “x” should 
not be expressed in terms of the 
variation of “q” w.r.t. “s”.

For that reason,

should be non-invertible, i.e. singular.  

x

t

dq/ds

dq/dx

The Mathematical Description
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The matrix is singular if

Eigenvalues matrix of 

Compare with the requirements for the scalar 
problem:

dt

ds

= 1 ,

dx

ds

= u

x

t

dq/ds

dq/dx

The Mathematical Description
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Hyperbolic.

Each of “A” eigenvalues has an associated 
eigenvector. 
This eigenvector sets the direction in 
the space-time of each of the 
characteristics.

So for each equation in the system, there 
is one eigenvector, i.e., one characteristic.

In particular, if “A” is diagonal, the 
characteristics are co-linear with the 
canonical base of the space-time 

Then, the equations are uncoupled, each 
one with its own canonical characteristic.

x

t

dq/ds

dq/dx

The Mathematical Description
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Remarks:

If “A” is linear, if it is hyperbolic, it will 
remain hyperbolic for ever.

If “A” depends on (x,t), it could lose 
its hyperbolic character. 

Even worse, if “A” is non-linear...

x

t

dq/ds

dq/dx

The Mathematical Description
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But once diagonalized, it is very likely that “q” will not be the quantity conserved 
when moved along the characteristic track. 

We can then try to find functions of “q” that are conserved along the characteristics: 
the Riemann Invariants. 

From the conserved RI compute 
the value of q at (x,t)

Diagonalize “A” and “AT”

Characteristics / Eigenvectors

Track back the initial (xo,to)

Find the RI’s expression
Warning: sometimes the RI’s do 
not exist...

The Mathematical Description
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One dimensional gas dynamics

This equation governs the propagation of sound in compressible flow.

Sound is a low intensity pressure wave that propagates at constant speed c. 

Remark 1: This equation can be re-written as a wave equation for the pressure.

Remark II: A similar equation can be obtained for sound propagation in solids.

The Mathematical Description
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One dimensional gas dynamics

⌘

± =
dx

dt

= u± c

Then, the two characteristics are the curves

The Mathematical Description
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dimensional problem, at each point of 
the x-coordinate (i.e. the space 
coordinate) there are two 
characteristics emerging at two 
different speeds. 

The problem can be seen as evolving 
surface water.

Sound propagation is the uniform and 
constant motion at speed c of surface 
gravity waves produced by some 
perturbation.

On top of that, flow speed u is any 
constant motion of the water pool with 
respect to a fixed reference frame. 

The Mathematical Description

⌘

± =
dx

dt

= u± c
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x

t

xf

If “u=0” there are two 
characteristics of opposite signs.   

I.e., one goes left, the other goes 
right

There are the three possible situations:

1. No flow speed

⌘

± =
dx

dt

= u± c

tf

The Mathematical Description
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x

t

xf

There are the three possible situations:

1. No flow speed

Characteristics are tracked back to 
positions ahead and behind, which are equidistant
to (xf,tf)

tf

The Mathematical Description
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xf

⌘

± =
dx

dt

= u± c

If the sound speed “c” is larger 
than the velocity “u”, one is positive 
and the other one is negative. 

I.e., one goes left and the other 
one goes right.

⌘+ ⌘�

x

t

tf

The Mathematical Description

There are the three possible situations:

2. Low flow speed (subsonic)
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xf

⌘+ ⌘�

x

t

tf

The Mathematical Description

There are the three possible situations:

2. Low flow speed (subsonic)

If the water pool is moving, speeds are
summed up so both sound sources are
dragged behind (xf,tf)

The blue characteristic (downwind) brings
information from a closer point, because
u counteracts c.

The red one (upwind) does it from a more 
distant point, because u adds to c.
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xf

There are the three possible situations:

3. High flow speed (supersonic)

⌘

± =
dx

dt

= u± c

x

t

⌘+ ⌘�

If the sound speed “c” is smaller 
than the velocity “u”, both have the 
same sign, but one is larger than the 
other.  

I.e., either both go left or both 
go right.

tf

The Mathematical Description
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xf

x

t

⌘+ ⌘�
tf

The Mathematical Description

There are the three possible situations:

3. High flow speed (supersonic)

If the water pool is moving at an even 
higher speed we reach the limiting point
when it moves at the same speed that
sound, so the blue characteristic is vertical.

Going even further, both sources are
left behind (xf,tf)

No information comes from the downwind
direction.
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The Mathematical Description

Morale:

To compute what happens at (xf,tf), we must 
know 

xf

x

t

⌘+ ⌘�
tf

xf

⌘+ ⌘�

x

t

tf

x

⌘+ ⌘�

t

xf

tf

⌘

± =
dx

dt

= u± c

where to go and get the information that set 
the value of q there...

... and nowhere else!!!!
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Now, consider a 1D system with diffusion

The Mathematical Description
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If  now “K” is not singular, then it could 
be inverted.

Then, there is no privileged direction at 
any point (x,t) and the value of “q” there is 
influenced from a surrounding environment.

Let us analyze this key aspect as follows...

dq

↵

ds

= K

↵� dq
�

dx

dq

↵

dt

+A

↵� dq
�

dx

= 0

Coming back to the original problem, let us see the effect of diffusion

where “K” is determined by the system

K

↵� = �A

↵� dt

ds

+ �

↵� dx

ds

x

t

dq/ds

dq/dx

The Mathematical Description: Diffusion

If “K” is invertible, a relationship 
can be established among both 
differentials…!



dq

↵

dt

+ (A↵� +B

↵�)
dq

�

dx

= 0
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non-diagonalizable tensor “B”:

⇤↵�

R↵�

w↵

dw

↵

dt

+ ⇤↵� dw
�

dx

= �(R↵�B
�✏
R

�1
✏� )

dw

�

dx

where

is the diagonal matrix whose entries are “A” eigenvalues

is the matrix whose columns are “A” eigenvectors

is the vector of unknowns in the diagonalized basis

Then

The Mathematical Description: Diffusion
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Dq

Dt

=
dq

dt

+ u(x, t)
dq

dx

= b(x, t)

was to “erode” the initial condition for “q” 
or the Riemann Invariants.

Then, the action of the right hand side term 
is to act as a “diffusion”. 

The diffusion can be seen as a mixing action 
on the unknowns “w”: 

dw

↵

dt

+ ⇤↵� dw
�

dx

= �(R↵�B
�✏
R

�1
✏� )

dw

�

dx

q

x

t
u

The Mathematical Description: Diffusion
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The Mathematical Description

This could give us a hint on what’s happening... again!

It is like to a purely convective equation, numerical discretisation has introduced 
diffusion!!
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Not all of the problems described by PDEs are hyperbolic...

... however, hyperbolic behaviour exposes a subtle feature that is of utmost 
importance.

It is so important that convective instabilities can arise even when diffusion is 
present, but it is not dominant.

Hyperbolic behaviour means that the value of the unknowns at certain (x,t) is 
completely determined by what’s happening along the space-time 
trajectory (i.e. characteristic). 

What lies outside these curves must not influence at all what is 
happening in (x,t). 

However, it happens…

This fact has a decisive consequence for discretising any equation...

The Mathematical Description
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Discretisation:

Divide and Conquer
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dq

dt

+ u

dq

dx

= 0

Suppose a 1-D convection equation:

With a certain initial data distribution 
q(x, t=0). 

We already know that it must 
propagate rightwards as it is.

x

q

u

�q

�t

= �u

�q

�x

�q = �u�t

�q

�x

x

q

1 2 3 4 5 6 ...

Discretising the equation,

Discretising the System



�qn+1

�t
=

qn+1 � qn

�t
=

qn+1 � q

�t
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backwards:

x

q

u

x

q

1 2 3 4 5 6 ...

�q2

�x

=
q2 � q1

�x

�q2

�x

=
q3 � q2

�x

�q2

�x

=
q3 � q1

�x

At first order, space is discretised in 
one of these three different ways, 
considering the velocity direction 
(positive in this case):

upwind

downwind

centered

u

Discretising the System
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q3 = q3 � C(q3 � q2)

q4 = q4 � C(q4 � q3)

q5 = q5 � C(q5 � q4)
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x

q

1 2 3 4 5 6 ...

u

Upwind discretisation produces a 
proper wave propagation although it is 
diffusive specially the higher the 
gradient.... unless what is 
explained a few slides later 
happens!

Numerical diffusion is co-related 
with the size of space-time 
discretisation. 

Discretising the System

�q = �u�t

�q

�x



C =
u�t

�x

q3 = q3 � C(q4 � q3)

q4 = q4 � C(q5 � q4)

q5 = q5 � C(q6 � q5)
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x

q

1 2 3 4 5 6 ...

u

x

q

1 2 3 4 5 6 ...

u

Downwind

Downwind discretisation produces 
oscillations that makes the scheme 
unstable, no matter how small 
discretisation is.

Discretising the System
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x

q

1 2 3 4 5 6 ...

u

Exercise

Centred it is even worse... 

Discretising the System
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Why is upwind a stable discretisation scheme...?

Discretising the System
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x

tBy combining the proper time and space 
integration schemes, we move backwards 
along the characteristic.

Current values must be computed only 
from previous ones and at a specific 
location: on the characteristic.

Time increment and space discretisation 
must have a relationship, both can´t be 
fixed independently.

Backwards (i.e. explicit) schemes stability 
depends on a limiting value of the time 
step:

CAUSALITY CANNOT BE VIOLATED

Discretising the System
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u

q3 = q3 � C(q3 � q2)

q4 = q4 � C(q4 � q3)

q5 = q5 � C(q5 � q4)

q3 = q2

q4 = q3

q5 = q4

BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
r... and finally, the upwind explains what was 

happening to our blob: 

Let us set

C =
u�t

�x

q3 = q3 � C(q3 � q2)

1. If we take exactly

x

q

1 2 3 4 5 6 ...

u

then, C=1 and

=>

which is a perfect transport!!!

Discretising the System
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r... and finally, the upwind explains what was 

happening to our blob: 

Let us set

C =
u�t

�x

q3 = q3 � C(q3 � q2)

1. If we take exactly

x

q

1 2 3 4 5 6 ...

u

then, C=1 and

which is a perfect transport!!!

Discretising the System

�t

�x

t

x

q3 = q3 � C(q3 � q2)

q4 = q4 � C(q4 � q3)

q5 = q5 � C(q5 � q4)

q3 = q2

q4 = q3

q5 = q4

=>



q3 = q3 � C(q3 � q2)

q4 = q4 � C(q4 � q3)

q5 = q5 � C(q5 � q4)
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C =
u�t

�x

q3 = q3 � C(q3 � q2)

2. If C is different than one

x

q

1 2 3 4 5 6 ...

u

and every value is a mean of itself and that of the 
upwind neighbour.

This introduces the numerical diffusion.

Discretising the System

... and finally, the upwind explains what was 
happening to our blob: 

Let us set



q3 = q3 � C(q3 � q2)

q4 = q4 � C(q4 � q3)

q5 = q5 � C(q5 � q4)

BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
r

C =
u�t

�x

q3 = q3 � C(q3 � q2)

2. If C is different than one

x

q

1 2 3 4 5 6 ...

u

and every value is a mean of itself and that of the 
upwind neighbour.

This introduces the numerical diffusion.

Discretising the System

... and finally, the upwind explains what was 
happening to our blob: 

Let us set

�t

�x

t

x
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Let’s go back to the upwind problem...

The same can be applied to equations with 
non-hyperbolic terms, like diffusion.

Now the hyperbolic terms can be 
computed using the characteristics (i.e. 
with upwind) and the non-hyperbolic ones 
using the closest neighbours. �t

�x

t

x

�

�x

✓
�qi,j

�x

◆
=

qi+1,j � 2qi,j + qi�1,j

�x

2

Recall that diffusion information 
propagation should include data from 
outside the characteristics.

Discretising the System
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x

tThe same analysis can be applied to the 
linear u(x,t) case

Accuracy depends on the time step and 
space increment

The same can be also applied to the non-
linear u(q,x,t) case

Non-linearity could require a second level 
of discretisation strategy: linearisation 
iterations 

Discretising the System
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The same can be applied for systems of 
equations (suppose 1D gas dynamics)

Now there are two unknowns and two 
characteristics, one for each equation 

Both of them go backwards in time but at 
opposite directions in space...

...but we find a new discretisation 
problem:

The space-time discretisation 
does not fit well simultaneously 
for both characteristics!

⌘+ ⌘��t

�x

t

x

Discretising the System
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non-hyperbolic terms.

Now the hyperbolic terms can be 
computed using the characteristics (i.e. 
with upwind) and the non-hyperbolic ones 
using the closest neighbors

But still remains the discretization problem 
with the convection for the blue 
characteristic.

⌘+

�t

�x

t

x
dq

↵

dt

+ (A↵� +B

↵�)
dq

�

dx

= 0

⌘�

Discretising the System



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
r

�t

�x

x

t

All cases share the same problem:

You cannot fix independently time and 
space

Time is flexible enough (up to causality)...

... but space discretisation is not!

Eventually, you could interpolate, but the 
blue dot is downwind!!!

And the problems pile up...

Discretising the System
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For ALL hyperbolic cases, if no upwind is used, the scheme is unstable

Backwards (i.e. explicit) schemes stability depends on a limiting value of the 
time step

Accuracy depends on the time step and space increment

Non-linearity requires a second level of discretization strategy: linearization 
iterations 

The space-time discretization does not fit well to the characteristics

When non-hyperbolic terms are present, the discretization problem with 
the convection for the blue characteristic remains

... and more to come.

Discretising the System
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Finite Differences

Suppose convective and 
diffusive fluxes:

All this means that you 
cannot expect that this 
will work on a general 
basis!!!

�

�x

✓
�qi,j

�x

◆
=

qi+1,j � 2qi,j + qi�1,j

�x

2

�qi,j

�x

=
qi+1,j � qi,j

�x

�qi,j

�x

=
qi+1,j � qi,j

�x

qi�1,jqi�1,j

qi+1,j

qi,j+1

qi,j

qi,j�1

Discretising the System
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Case I

Case II: smaller dt
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So how all these problems can be attacked?

Convective stabilisation issue:
Convective stabilisation is a traditional issue in numerical analysis.
Different solutions proposed, depending on the context.
What context? Finite Elements or Finite Volumes.

FV: Low order: upwind for first derivatives (linear version of Godunov 
method)

FV: Higher order schemes: increase the time order

FV: Limiters and Total Variation Diminishing (TVD) to treat discontinuities

FE: Artificial Diffusion (AD), Streamline Diffusion (SD), Streamline Upwind 
Petrov- Galerkin (SUPG)

FE: Characteristic Galerkin (CG)

FE: Galerkin Least Squares (GLS), Variational Multiscale (VM or VMS), 
Preconditioned stabilisation

FE: Shock capturing to treat discontinuities  

Discretising the System
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So how all these problems can be attacked?

Convective stabilisation issue:
Convective stabilisation is a traditional issue in numerical analysis.
Different solutions proposed, depending on the context.
What context? Finite Elements or Finite Volumes.

The idea is basically the same:

Try to stay as much as possible on the characteristics

Add a (numerical) diffusion along the characteristics

Increase the order of the scheme to diminish numerical diffusion: LOW 
ORDER IS MORE DIFFUSION (degrades faster with time / space)

Numerical diffusion must be smart enough to cope with mixed 
convection-diffusion-reaction problems

Recall that this problem comes from the hyperbolic character of the 
equations, so it will be present in both explicit or implicit schemes.

Discretising the System
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So how all these problems can be attacked?

Convective stabilisation issue:
Convective stabilisation is a traditional issue in numerical analysis.
Different solutions proposed, depending on the context.
What context? Finite Elements or Finite Volumes.

Limiting time step for explicit schemes:

If the critical time step is too small, the efficiency of the scheme is 
compromised (low Mach, high aspect ratios, contact problems...). 

Accuracy:

Time higher order schemes: Runge-Kutta, alpha-generalized, Crank-
Nicholson,...
Space higher order schemes: limiters (FE), higher interpolation order (FE), 
larger stencils (FD)...

Non-linear iterative schemes (for implicit schemes):

Jacobi iterations, Newton iterations with tangent moduli or secants
Newton-Krilov matrix free

Discretising the System
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To have a deeper idea on the difficulties of stabilising convection, let us go to a 
higher order scheme

Consider

qn+1 = q + �t
@q

@t
+

1
2
�t2

@2q

@t2
+ · · ·

A 2nd order Taylor expansion gives

@

2
q

@t

2 = u

@

@t

✓
@q

@x

◆
= u

@

@x

✓
@q

@t

◆
= u

@

@x

✓
u

@q

@x

◆
= u

2 @

2
q

@x

2

Considering that

q

n+1 = q + �t u

@q

@x

+
1
2
�t

2
u

2 @

2
q

@x

2
| {z }

Then, the so called Lax-Wendroff scheme is

Diffusion-like term

Discretising the System
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There are several ways of computing 
the first and second derivatives: 
upwind, centred, projecting the 
fluxes, ... so we obtain different 
behaviours and different schemes.

Lax Wendroff: all centered

Beam Warming: all upwinded

And discontinuities make them 
worse!

q

n+1 = q + �t u

@q

@x

+
1
2
�t

2
u

2 @

2
q

@x

2
| {z }

Diffusion-like term

Discretising the System
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Limiters:
A FV-based stabilisation strategy.

They are sophisticated ways of limiting 
the steepness of the variations.

Sophisticated, yes... 

... but computationally expensive and 
too artisanal.

Diffusion-like term

Discretising the System
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we find another one!!

Discontinuities

Discretising the System
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Fluids: 

Boundary layers at high Reynolds

Mixing layers

Shocks

Combustion, in regions of strong active behavior

Flows with free surface

Discontinuities in initial / boundary conditions

Discretising the System
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Solids:

Fracture

Abrupt changes in material properties

Complex materials and composites

Plasticity

Discretising the System
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Discretisation:

Divide and Conquer 

(at last)
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Conservative 
Form (DCF)

The partial differential 
equation derived from 
IF

Additional regularity 
assumptions required

@q

↵

@t

+
@F

↵
i (q)

@xi
= 0

The Differential 
Jacobian Form 
(DJF)

A little algebra to 
derive it from DCF

More regularity 
assumptions required

A form that exposes 
the deepest features 
of the problem

@q

↵

@t

+ A

↵�
i

@q

�

@xi
= 0

The Integral 
Form (IF)

The basic form of a 
conservation principle

No continuity 
assumptions

n̂
⌦

@⌦

@

@t

Z

⌦
q↵ �

Z

@⌦
F↵

i ni = 0

Discretising the System
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Finite Differences

Suppose convective and 
diffusive fluxes:

Discretising the System
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Very intuitive

Simple coding

Very efficient and well suited for translation to a computer code

Structured meshes

Problems with Neuman boundary conditions (but solvable, if you pay the price)

Lack of scalability for high order schemes

Humble numerics: stabilisation, boundary conditions, adaptivity...

Discretising the System
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Characteristic 
Function

Second strategy: 
Finite Volumes

Divergence Gauss 
Theorem

y

x

�i,j�1

�i,j+1

�i�1,j �i,j �i+1,j

�

Discretising the System
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Characteristic 
FunctionSecond strategy: 

Finite Volumes �

The characteristic function is a “filter” that focuses the equation only in the filter’s 
support.

When you project, the rest of the domain disappears.

Is like the IF, but filtered on small cells.

You only have to compute the fluxes through the limits of the cell: 
the numerical fluxes

Discretising the System
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Finite Volumes

Numerical fluxes

The cells’ limits are discretised in faces or edges following the space discretisation.

The fluxes on faces are function of the values of the unknown at both sides of the 
face.

There are many many many ways of constructing these fluxes

The scheme’s order depends on how the fluxes are computed and how far should 
we go to get the information required

(discussed below…)

Discretising the System
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Intuitive, specially for Physicists

More complex codification

Very robust, with large story of success and theoretical developments

Unstructured meshes

Convective fluxes, ok. Diffusive fluxes, more bricolage is needed (but doable)

Lack of scalability for high order schemes

Sophisticate numerics: stabilisation, boundary conditions, adaptivity...

Long tradition, particularly for CFD compressible flows

Discretising the System
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Test Function

Third strategy: 
Finite Elements

Divergence Gauss 
Theorem

y

x

�i,j�1

�i,j+1

�i�1,j �i,j �i+1,j

Discretising the System
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Test Function

Third strategy: 
Finite Elements

Divergence Gauss 
Theorem

y

x

�i,j�1

�i,j+1

�i�1,j �i,j �i+1,j

Discretising the System

Z
 
@F

↵
i

@xi
=

Z
@

@xi
( F↵

i )�
Z
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@xi
F
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�
Z
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�
I

�F↵
i ni

Recall that for FV:
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Finite Elements

�i,j�1

�i,j+1

�i�1,j �i,j �i+1,j

As in FV, the test function is a “filter” that focuses the equation only in the filter’s 
support.

When you project, the rest of the domain disappears.

It is like the IF, but filtered on small cells, the elements.

You only have to compute the fluxes through the limits of the cell or pass the 
derivatives (convolution) to the filter

The integrals are computed numerically as function of the values at the nodes of 
the elements

How to increase the order (see below)

Discretising the System

�
Z

@ 

@xi
F

↵
i
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Not very intuitive

Apparent complex codification, but not that much...

Profound mathematical background

Unstructured meshes, hybrid meshes

High order schemes naturally implemented

Good scalability

Not necessary expensive: must be programmed with care

Very sophisticate numerics: stabilisation, boundary conditions, adaptivity...

Long tradition in all fields of PDEs

Discretising the System
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Discretising the System

Finite Elements and the Navier-Stokes equations
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@E

@t

+
@

@xi
(uiE) +

@

@xi
(uip� k

@T

@xi
� ⌧ijuj) + ⇢(uigi + r) = 0

@⇢

@t

+
@

@xi
(Ui) = 0

@Uj

@t

+
@

@xi
(uiUj) +

@

@xi
(�ijp� ⌧ij) + ⇢gj = 0

Ui = ⇢ui, E = ⇢(CvT + u2/2)

is the viscous stress tensor

are the momentum and the total energy

Finite Elements and the Navier-Stokes equations

⌧ij = µ(
@uj

@xi
+

@ui

@xj
� 2

3
�ij

@ui

@xi
)

p = ⇢RT is the ideal gas law
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@Uj

@t

+
@

@xi
(uiUj) +

@

@xi
(�ijp� ⌧ij) + ⇢gj = 0

Momentum 
convection

Pressure 
forces

Viscous
forces

Gravity
forces

⌧ij = µ(
@uj

@xi
+

@ui

@xj
� 2

3
�ij

@ui

@xi
)

Finite Elements and the Navier-Stokes equations
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@⇢

@t

+
@

@xi
(Ui) = 0

@⇢

@t

+ ui
@⇢

@xi
+ ⇢

@ui

@xi
= 0

Compressibility

Mass in a volume of fluid changes by 
crossing boundaries and by 
compression / expansion

Compressibility relates pressure, 
temperature and density through 
the equation of state

p = ⇢RT is an example

c =

s
@p

@⇢
|s =

p
�p/⇢ speed of sound

Finite Elements and the Navier-Stokes equations
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@E

@t

+
@

@xi
(uiE) +

@

@xi
(uip� k

@T

@xi
� ⌧ijuj) + ⇢(uigi + r) = 0

is the total energyE = ⇢(CvT + u2/2)

Pressure 
work

Energy 
convection

Thermal
diffusion

Joule 
effect

Gravity 
work

Heat 
sources

@T

@t

+ ui
@T

@xi
+

1
Cv⇢

✓
p

@uk

@xk
� ⌧ij

@ui

@xj
� k

@

2
T

@xi@xi

◆
= 0

Alternative, heat transport equation

Finite Elements and the Navier-Stokes equations
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Momentum: forces balance

Density: continuity equation

Energy: energy balance

Three main regimes, determined by two non-dimensional numbers:

Compressible and Incompressible: Mach number (M)

Viscous and Inviscid: Reynolds number (Re)

Laminar and Turbulent (Re)

U↵ = (Uj , ⇢, E)

@U

↵

@t

=
@F

↵
i

@xi
+ S

Finite Elements and the Navier-Stokes equations
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The state equation couples thermodynamics with mechanics
The Mach number represents the ratio between the “mechanic speed” and the 
“thermodynamic speed”

When strictly incompressible:

Energy decouples from mechanics, no transfer from internal to kinetic

Speed of sound becomes infinite

Pressure is only mechanical

Temperature (i.e. heat) is a transported scalar

To be deeper analyzed below…

@ui

@xi
= 0

Finite Elements and the Navier-Stokes equations
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The state equation couples thermodynamics with mechanics

When slightly compressible:

Very low transfer from internal to kinetic by any meaning

Speed of sound becomes very large, very low Mach numbers

Pressure is mostly mechanical

System matrix becomes very ill-conditioned

A

↵�
i

@U

�

@xi

Finite Elements and the Navier-Stokes equations
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Discretising the System
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Finite Elements and the Navier-Stokes equations
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Finite Elements and the Navier-Stokes equations
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The state equation couples thermodynamics with mechanics

When compressible:

Internal and kinetic heavily interchanged

Speed of sound comparable to the speed of fluids

Pressure works related to internal energy (temperature)

Appearance of shock waves

Low-Mach modelling could be a good compromise

A

↵�
i

@U

�

@xi

Finite Elements and the Navier-Stokes equations
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Finite Elements and the Navier-Stokes equations
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Finite Elements and the Navier-Stokes equations
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As you will recall, viscous terms has a decisive effect 
The Reynolds number represents the ratio between convection and viscous effects.

When viscosity is zero,

Energy is not dissipated through heat

Circulation is conserved, although vortices could appear (as seen above)

Entropy is conserved, unless shocks appear

When viscosity is non-zero,

Boundary layers appears

Complex shock behaviours (lambda systems)

Finite Elements and the Navier-Stokes equations
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Finite Elements and the Navier-Stokes equations

Carter’s problem:

Flow over a plate
Re = 1000, Ma= 3
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The onset of turbulence and modelling subscales

When Reynolds is high,

Physical subscales cannot be simulated, so they are modelled

DNS, simulating when possible 

RANS (over ensembles), LES (over space) and mixed modelling

Compressible turbulence is even more difficult (for high compressibility)

Finite Elements and the Navier-Stokes equations
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Finite Elements and the Navier-Stokes equations
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Finite Elements and the Navier-Stokes equations

Meeting bei Siemens > Rainer Lückerath  > 09.03.2011 > Folie 3
Institut für Verbrennungstechnikconfidential

vertraulich

Status of work package 2.1
WP 2: Validation of scaled systems at high pressure test rig with optical access

Construction and manufacturing of the scaled burner 9

Optical access for measurements with 4 quartz windows near burner
4 additional quartz windows to obtain hot walls for the entire length of the 
combustion chamber 

380 mm 95 x 95 mm

ignition burner
pilot burner

main burner
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Finite Elements and the Navier-Stokes equations
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M

�t
�U+KU⇤ = 0

�U = Un+1 �Un

M is the mass matrix
K is the system matrix

Z
 
@U

↵

@t

=

Z
 
@F

↵
i

@xi

Z
 
@U

↵

@t

=

Z
 A↵�

i

@U

�

@xi
or

Finite Elements and the Navier-Stokes equations

* means when it is computed

* = n           is explicit
* = n+1       is implicit
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Discretising the System

a, b label two different nodes

Elementary matrices size is:
ndofn x nnode

I

J

KIJ
e = Kab,↵�

e M IJ
e = Mab,↵�

e

For instance, supposing tetrahedra:

Density for node 3 in element e is 
(3,4) or

J = 5*(3-1) + 4

X-momentum for node 2 in element 
e is (2,1) or

J = 5*(2-1) + 1



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
rThe elementary system matrix is (the same can be said about the mass matrix):

Discretising the System

Once computed at each element, 
system or mass matrices are 
assembled in the global ones

KIJ =
NelX

e

KIJ
e

a, b label two different nodes

Elementary matrices size is:
ndofn x nnode

I

J

KIJ
e = Kab,↵�

e M IJ
e = Mab,↵�

e

M IJ =
NelX

e

M IJ
e
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Discretising the System

Finite Elements

Stabilization
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Discretising the System

Finite Elements
Stabilization

Typical FEM-based discretization use a residual weighted stabilization.

The idea is to maintain the order of the Galerkin scheme while adding a stabilization 
term that vanishes for sufficiently smooth solutions.

Variational Multiscale Stabilization (VMS) is the mother of all: SUPG, GLS, CG, …
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Discretising the System

Finite Elements
Stabilization

Typical FEM-based discretization use a residual weighted stabilization.

The idea is to maintain the order of the Galerkin scheme while adding a stabilization 
term that vanishes for sufficiently smooth solutions.

Variational Multiscale Stabilization (VMS) is the mother of all: SUPG, GLS, CG, …

�̃� = ⌧��r� Stabilization termSubscale
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Z
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Z
 S

Z
 
@�↵

@t

+

Z
 A↵�

i

@�

@xi

�

+

Z
@

@xi
( A⇤↵�

i )�̃� =

Z
 S



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
rFinite Elements

Stabilization

Typical FEM-based discretization use a residual weighted stabilization.

It looks complex, but it can be efficiently implemented
Very flexible and robust
Well-suited for multi-scale problems

As it depends on the residual, it vanishes if the equation is satified

(Moragues PhD Thesis, 2016)

Discretising the System
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Finite Elements and the Navier-Stokes equations
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Finite Elements and the Navier-Stokes equations

�̃� = ⌧��r�
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Unstructured meshes

Definition

How to construct the characteristic function or the test function?

How to increase the order?

Discretising the System

�i,j�1

�i,j+1

�i�1,j �i,j �i+1,j

�i,j�1

�i,j+1

�i�1,j �i,j �i+1,j
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Discretising the System

FV
Node centered

FV
Cell centered

FEM
Element based, but 
nodal unknowns
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Discretising the System

FV
Node centered

FEM
Element based, but 
nodal unknowns

Share a very similar connectivity structure

Local connectivity can be high

(Highly) variable stencils

DoF on nodes
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Discretising the System

FV
Cell centered

Local connectivity is generally low

Stencils fixed

DoF on elements (usually more than nodes)
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Discretising the System

Increasing the 
order: Finite 
Volumes

Larger “friends” range

Increased matrix bandwidth

Heavier matrix assembly 

New fluxes required, not a simple “extension”

Less nodes required to have the same accuracy

In discontinuities, lower the order
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Discretising the System

Increasing the 
order: Finite 
Volumes

Larger “friends” range

Increased matrix bandwidth

Heavier matrix assembly 

New fluxes required, not a simple “extension”

Less nodes required to have the same 
accuracy

In discontinuities, lower the order
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Discretising the System

Increasing the 
order: Finite 
Elements

Higher polinomials’ order

Increased matrix bandwidth

Heavier matrix assembly

Simple extension 

Less nodes required to have the same accuracy

Mesh generation issues

Not so good for discontinuities

Another possibility: spectral elements
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Discretising the System

Remember that, within an element and for a certain position, the value of a function 
and its derivative is interpolated from its values in the nodes in the following way:

KIJ
e = Kab,↵�

e = Cab,↵�
e + Sab,↵�

e +Dab,↵�
e

Finite 
Elements
Stabilization

Z
 
@�↵

@t

+

Z
 A↵�

i

@�

@xi

�

+

Z
@ 

@xi
A

⇤↵�
i �̃� =

Z
 S

g(⇣) = Na(⇣)ga

@g

@xi
(⇣) =

@N

@xi

a

(⇣)ga

PIZARRA:
- integración numérica
- funciones de forma
- funciones de test
- orden de elementos
- 1, 2, 3 dimensiones
- espacio paramétrico
- …
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Discretising the System

Mab,↵� = �↵�N
b Na

Mass matrix

Tangent matrix, later…

Dab,↵�
e

KIJ
e = Kab,↵�

e = Cab,↵�
e + Sab,↵�

e +Dab,↵�
e

Finite 
Elements
Stabilization
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Discretising the System

C

ab,↵� = A

↵�
i

@N

b

@xi
N

a

Galerkin term:
Even if there is no integration by parts, it is so-called by extension

Finite 
Elements
Stabilization

KIJ
e = Kab,↵�

e = Cab,↵�
e + Sab,↵�

e +Dab,↵�
e
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Discretising the System

Sab,↵� = L̃a,↵� T b,��

L̃

a,↵� = A

↵�
i

@N

a

@xi

T

b,�� = A

��
i

@N

(b)

@xi
⌧(b)

Stabilization term

Adjoint operator

Subscale

KIJ
e = Kab,↵�

e = Cab,↵�
e + Sab,↵�

e +Dab,↵�
e

Finite 
Elements
Stabilization
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Assembly can be done with any method: FVM, FEM, FDM, …

On any discretization

With any stabilization

Even boundary conditions can be integrated in 
the assembly

Then, the assembled matrix (or RHS) can be passed to the 
solver.

The solution scheme can be direct or iterative of any kind

With any preconditioner

M

�t
�U+KU⇤ = 0

�U = Un+1 �Un

KIJ =
NelX

e

KIJ
e

M IJ =
NelX

e

M IJ
e

Discretising the System
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Discretising the System: The solver

M

�t
�U+KU⇤ = 0

✓
M

�t
+K

◆
�U = �KUn

�U = Un+1 �Un

A very useful scheme is based on the “delta form”

�U = Un+1 �Un
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M

�t
�U+KU⇤ = 0

✓
M

�t
+K

◆
�U = �KUn

�U = Un+1 �Un

✓
M

�t

◆
�U = �KUn

✓
M

�t
+K

◆
�U = �KUn

✓
M

�t
+

K

2

◆
�U = �KUn

A very useful scheme is based on the “delta form”

�U = Un+1 �Un

Depending on *, we get:

1st order Forward Euler

1st order Backward Euler

2nd order Crank-
Nicholson

Discretising the System: The solver
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M

�t
�U+KU⇤ = 0

✓
M

�t
+K

◆
�U = �KUn�U = Un+1 �Un

A very useful scheme is based on the “delta form”

Remember that K depends on U…

For each time step the system is solved iteratively

✓
M

�t
+ ✓Ki

◆
�U = �KUn

Ui+1 = Un +�U

Discretising the System: The solver

✓ = 0, 1, 0.5
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M

�t
+ ✓K

◆
�U = �KUn

✓
M

�t
+ ✓K

◆
(�Ũ+Ui �Un) = �KUn

✓
M

�t
+ ✓K

◆
�Ũ =

M

�t
(Un �Ui)� ✓KUi �K(1� ✓)Un

✓
M

�t
+ ✓K

◆
�Ũ =

M

�t
(Un �Ui) + ✓K(Un �Ui)�KUn

�U = Ui+1 �Un

�Ũ = Ui+1 �UiOn iterations

On time steps

�U = �Ũ+Ui �Un

Discretising the System: The solver
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Preconditioning and pseudo-time step

✓
M

�t
+ ✓K

◆
�Ũ =

M

�t
(Un �U)� ✓KU�K(1� ✓)Un

Discretising the System: The solver

where we drop the “i” subindex to label the current iteration

What if we add something to the LHS to improve convergence?
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✓
M

�⌧
+

M

�t
+ ✓K

◆
�Ũ =

M

�t
(Un �U)� ✓KU�K(1� ✓)Un

Ui+1 = U+�Ũ

Discretising the System: The solver

where we drop the “i” subindex to label the current iteration

What if we add something to the LHS to improve convergence?

✓
M

�t
+ ✓K

◆
�Ũ =

M

�t
(Un �U)� ✓KU�K(1� ✓)Un
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They have no information on the gradients to improve convergence properties

Another possibility are Newton schemes… 

if you can afford the gradients’ computation

Discretising the System: The solver
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stepped problem:

M
�Ũ

�⌧
+M

�U

�t
+K(U)U = r

Discretising the System: The solver

✓
M

�⌧
+

M

�t
+ ✓K

◆
�Ũ =

M

�t
(Un �U)� ✓KU�K(1� ✓)Un

✓ = 0, 1, 0.5



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
r

ri+1 ⇡ r+�Ũ
@r

@U
= 0

Taylor expansion of the resitual at iteration “i”:

When 0, it has converged

M
�Ũ

�⌧
+M

�U

�t
+K(U)U = r

After some algebraic maneuvers, this is the residual for the pseudo-time 
stepped problem:

Discretising the System: The solver
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�Ũ
@r

@U
= �r

@r

@U
=

@

@U

"
M

�Ũ

�⌧
+M

�U

�t
+K(U)U

#

@r

@U
=

M

�⌧
+

M

�t
+K+U

@K

@U

Then, we solve

Where

�U = Ui+1 �Un

considering that residual is evaluated at iteration “i” (the last we have!), therefore

means
�U = U�Un

�Ũ = U�Ui�1�Ũ = Ui+1 �U

Discretising the System: The solver

ri+1 ⇡ r+�Ũ
@r

@U
= 0 =>
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Compare (suppose Backward Euler):

✓
M

�⌧
+

M

�t
+K+U

@K

@U

◆
�Ũ = �KU� M

�t
(U�Un)� M

�⌧
(�Ũi�1)

✓
M

�t
+K+U

@K

@U

◆
�Ũ = �KU� M

�t
(U�Un)

Tau-Newton

Newton

Discretising the System: The solver
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Compare:

✓
M

�⌧
+

M

�t
+K+U

@K

@U

◆
�Ũ = �KU� M

�t
(U�Un)� M

�⌧
(�Ũi�1)

✓
M

�t
+K+U

@K

@U

◆
�Ũ = �KU� M

�t
(U�Un)

Tau-Newton

Newton

✓
M

�t
+K

◆
�Ũ = �KU� M

�t
(U�Un) Jacobi

Discretising the System: The solver
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Compare:

✓
M

�⌧
+

M

�t
+K+U

@K

@U

◆
�Ũ = �KU� M

�t
(U�Un)� M

�⌧
(�Ũi�1)

✓
M

�t
+K+U

@K

@U

◆
�Ũ = �KU� M

�t
(U�Un)

Tau-Newton

Newton

✓
M

�⌧
+

M

�t
+K

◆
�Ũ = �KU� M

�t
(U�Un)

✓
M

�⌧
+

M

�t
+K

◆
�Ũ = �KU� M

�t
(U�Un)� M

�⌧
(�Ũi�1)

Tau-Jacobi

Tau-Jacobi-2

✓
M

�t
+K

◆
�Ũ = �KU� M

�t
(U�Un) Jacobi

Discretising the System: The solver
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✓
M

�⌧
+

M

�t
+K+U

@K

@U

◆
�Ũ = �KU� M

�t
(U�Un)� M

�⌧
(�Ũi�1)

Discretising the System: The solver

Remarks:

RHS is the same for all: we do not change the original system at all

We have only add terms to the LHS 

Not any term, but very specific ones

We are just trying to improve the condition number of the system

That is to say, preconditioning
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Discretising the System: The solver

The system can be solved in either a monolithic or a segregatted way.

Each of them has its own features…
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Then, if the solution is smooth, we are more or less done. 

But if the solution could admit discontinuities or even sharp gradients, a 
different strategy must be defined.

The main difference is in the starting point: the equation.

Strategy:

Take the Integral Form
Discretise the space by tessellation
Define compact support functions for each of the cells or elements
Filter the IF by projecting the compact support space
Integrate by parts some terms when needed
Discretise the time by finite differences
Compute the resulting integrals numerically
Define a stabilization scheme

The IF becomes an algebraic system of equations (linear or linearised)

...

Discretising the System: The solver
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But remeber… in all schemes stabilisation problems persist!!!!

Discretising the System: The solver
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Discretising the System: The solver

Incompressible flows (distraction)

There is an alternative to incompressible flows, that comes from strictly imposing

@ui

@xi
= 0

Then, continuity equation becomes just a constant density condition. 

Now, taking the divergence to the momentum equation

@Uj

@t

+
@

@xi
(uiUj) +

@

@xi
(�ijp� ⌧ij) + ⇢gj = 0

and using the velocity divergence zero, we come up with a Poisson equation for 
the pressure, leading to the following system…




Auu Aup

Apu App

� 
u
p

�
=


bu

bp

�
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Discretising the System: The solver

Monolithic scheme




Auu Aup

Apu App

� 
u
p

�
=


bu

bp

�

Sp = bS

⇢
S = App �ApuA�1

uuAup

bS = bp �ApuA�1
uubu

⇢
Auuuk+1 = bu �Auppk

(App +P)pk+1 = bp �Apuuk+1 +Ppk

pk+1 = pk + (App +P)�1(bS � Spk)
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Schur complement system 
for the pressure

Preconditioned iteration 
for the pressure

Final system

Solve using preconditioned (P) 
Richardson iteration 

Solve momentum 
Substitute velocity in continuity

Discretising the System: The solver
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Discretising the System

Going beyond:

Local Preconditioning
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Discretisation:

Algorithms and Codes
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By discretising the system, we highly reduce the DIMENSIONALITY of the problem.

From continuous to discretised. 

Discretising time and space, we transformed the differential equations in a (potentially 
very large) ALGEBRAIC SYSTEM

Discretising the System



M
�n+1 � �n

�t
+ [C(�) + K(�)] �⇤ + s(�⇤) = b
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Discretisation lead us to the following matrix system

We must adopt a solution strategy (the solver), analyzing these issues

Explicit

Implicit

Solving “by blocks”

How and what to parallelize

Time derivative Non-linear matrix Non-linear 
ODE term

Non-sym Sym

Discretising the System
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⇤ := n + 1

⇤ := n

Depending on the definition of * the scheme is Explicit or Implicit

Implicit

Explicit

Solution strategies

M
�n+1 � �n

�t
+ [C(�) + K(�)] �⇤ + s(�⇤) = b

Discretisation issues:

We arrive at the following matrix system

Time derivative Non-linear matrix Non-linear 
ODE term

Non-sym Sym



Md
�n+1 � �n

�t
= � [C(�) + K(�)] �n � s(�n) + b
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�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)

Features:

RHS can be directly computed, no matrix storage required 

Computing the RHS (assembly) is, by far, the most time consuming part

Solution strategies



�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)
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Features:

Lumped mass matrix represents the “mass” associated to each mesh node 

It is a diagonal matrix, trivially inverted

Solution strategies



�t =
fCFL

u

h1
+

2k

h2
2

+
c

h3
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Features:

Time step computed from stability conditions, such as the CFL condition

What is the time a signal takes to propagate within a given element?

Velocity

Diffusion

Acoustic waves (linear, small perturbations)

Shock waves (non linear, strong gradients)

For instance

Solution strategies

�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)
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Features:

Time step computed from stability conditions, such as the CFL condition

From theoretical arguments for simple equations, the CFL factor is 1. 

However, more complex problems could require smaller figures. 

But what is “h”?

Solution strategies

�t =
fCFL

u

h1
+

2k

h2
2

+
c

h3

�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)
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Features:

Time step computed from stability conditions, such as the CFL condition

But what is “h”?

Solution strategies

�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)
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Features:

Time step computed from stability conditions, such as the CFL condition

For transient problems, the mesh minimum value is taken

For transient coupled problems, the per-equation minimum value is taken

For stationary problems, local time steps can be used (but eye...!!)

Both can be combined with “pseudo-time step” formulations (Jameson papers)

Solution strategies

�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)
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Features:

Time step computed from stability conditions, such as the CFL condition

The Characteristic Condition Number is the ratio of the largest to the smallest 

characteristic speeds:

Solution strategies

�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)

u,
2k

h
, c, ...

When one of them goes to zero, the system becomes extremely “stiff”

Preconditioning is required!

Local preconditioners for Explicit schemes: Turkel, Weiss, Van Leer, ...

Global preconditioners for Implicit iterative schemes: Diagonal, ILU, ...
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Features:

Dirichlet boundary conditions can be imposed after a time advance step

This gives enough flexibility for non-linear conditions: Navier-Stokes / Euler

Neuman boundary conditions enters in the RHS for FEM

Neuman boundary conditions are transformed in Dirichlet ones for FD

Solution strategies

�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)
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Features:

The downside is the time step limitation, which in some very “stiff” problems can be 
extremely limiting... such as incompressible flows or solids

Then... Implicit methods are the best option.

Are they indeed?

Solution strategies

�n+1 = �n �M�1
d �t ([C(�) + K(�)] �n � s(�n) + b)



M
�n+1 � �n

�t
+ [C(�) + K(�)] �⇤ + s(�n+1) = b


M

1
�t

+ Md s(�) + C(�) + K(�)
�

�n+1 = M
�n

�t
+ b
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Time RHSODE-like Non-sym Sym

Non-linear matrix

Solution strategies




M

1
�t

+ Md s(�) + C(�) + K(�)
�

�n+1 = M
�n

�t
+ b
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Time RHSODE-like Non-sym Sym

Sub-matrices:

Time matrix: consistent mass matrix, that couples first neighbors (for first order)

ODE-like matrix: diagonal mass matrix to preserve locality. Let us suppose this term non-
linear

Non-symmetric matrix: comes from first space derivative matrices, such as convection 
ones

Symmetric matrix: comes from second space derivative matrices, such as Laplacians 
(diffusion) or stress (large strain solid mechanics)

Solution strategies
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Features:

Consider the matrix divided in blocks according to certain grouping of the unknowns. 
Then, not all the blocks prefer the same solution scheme... 

Typically, compact support problems can have a relatively low bandwidth, so sparse 
algebra is better-suited.

On the other hand, other problems can produce filled matrices (i.e. Fourier, Bessels, plane 
waves...)

Renumbering can be decisive for a better data distribution

Solution strategies


M

1
�t

+ Md s(�) + C(�) + K(�)
�

�n+1 = M
�n

�t
+ b



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
r

Features:

The problem is now clearly divided in two parts

1. The RHS and matrices assembly

2. The solver

Which is the most time consuming part in an implicit scheme? 

Typically the second one, say from 40-60 up to 10-90

Let us analyze it the algorithmic of the implicit form...

Solution strategies


M

1
�t

+ Md s(�) + C(�) + K(�)
�

�n+1 = M
�n

�t
+ b
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Compute Matrix and RHS:

Do elements (or faces or nodes...) iterations

Compute elementary Matrix and RHS

Assemble

Enddo

Solver (iterative or direct)

Enddo

Update coupling

Enddo

Enddo

Update time step

Enddo

Output data

Solution strategies
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Compute Matrix and RHS:

Do elements (or faces or nodes...) iterations

Compute elementary Matrix and RHS

Assemble

Enddo

Solver (iterative or direct)

Enddo

Update coupling

Enddo

Enddo

Update time step

Enddo

Output data

Mesh
Boundary conditions
Scalar data

Binary formats for large data
(Endian vs Big Endian)

Standard formats such as CGNS or 
marked for scalar

Checkpoint - restart

Solution strategies
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Compute Matrix and RHS:

Do elements (or faces or nodes...) iterations

Compute elementary Matrix and RHS

Assemble

Enddo

Solver (iterative or direct)

Enddo

Update coupling

Enddo

Enddo

Update time step

Enddo

Output data

Stencils and mass matrix

Analyze matrix system to see what 
can be pre-computed

Trade off between storage and 
computing time

Compute normals and boundary 
values

Solution strategies
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Compute Matrix and RHS:

Do elements (or faces or nodes...) iterations

Compute elementary Matrix and RHS

Assemble

Enddo

Solver (iterative or direct)

Enddo

Update coupling

Enddo

Enddo

Update time step

Enddo

Output data

Solution strategies
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Coupling: 
related to the solver
related to the Physics
related to both 

Solution strategies


M

1
�t

+ Md s(�) + C(�) + K(�)
�

�n+1 = M
�n

�t
+ b
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Compute Matrix and RHS:

Do elements (or faces or nodes...) iterations

Compute elementary Matrix and RHS

Assemble

Enddo

Solver (iterative or direct)

Enddo

Update coupling

Enddo

Enddo

Update time step

Enddo

Output data

Loop over element, nodes, faces, 
edges, to compute local 
contributions to RHS and Matrices

Locality of data (gather - scatter)

Solution strategies
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Element

Edges

Global Vector

Local copiesMake a local copy of the working 
vectors
The more FLOPs per DOF, the better 
is to do a local copy
Local copies can be done every N 
elements

Solution strategies
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Compute Matrix and RHS:

Do elements (or faces or nodes...) iterations

Compute elementary Matrix and RHS

Assemble

Enddo

Solver (iterative or direct)

Enddo

Update coupling

Enddo

Enddo

Update time step

Enddo

Output data

For implicit schemes, this is the 
bottle neck

Solution strategies
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Input data

Compute geometrical stuff (only once)

Do time steps

Do coupling iterations

Do linear iterations

Compute Matrix and RHS:

Do elements (or faces or nodes...) iterations

Compute elementary Matrix and RHS

Assemble

Enddo

Solver Iterative (GMRES/BCGstab/CG…)

Enddo

Update coupling

Enddo

Enddo

Update time step

Enddo

Output data

Newton Krylov methods:

Newton for the linear iterations
Iterative for the solver

Solution strategies
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Avoid direct solvers when possible
Good for small - medium problems
Bad for large ones, too much memory required
Very bad scalability
However, very stiff problems could require a direct solver...

The election of the iterative solver is strongly biased by the
form of the matrix:

Symmetric, then Conjugate Gradient family
Otherwise, Krylov subspace family

However... some Krylov family can be very good for symmetric problems

Solvers
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Solvers


M

1
�t

+ Md s(�) + C(�) + K(�)
�

�n+1 = M
�n

�t
+ b
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Solvers

=

 First Case: Monolithic

Large memory requirements
Stiffness (very likely)

If you can cope with that, 
it is efficient and accurate



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
rIssues: Solution strategy

 Second Case: Blocks

Grouping by :
variables
operators
spacial regions features

Solvers

=
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Multiphysics and multiscale revisited
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Physical 
model

Time-
space 
scales

Problem A Problem B

Problem C

Multiphysics and multiscale revisited
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Multi-scale, but same physics: Turbulent flows (RANS, LES):

One equation solved for the mean flow 

One set of equations solved or modeled for the highly fluctuating turbulence perturbations 
(turbulent energy and dissipation, length scale, Reynolds tensor...)

Two-way coupling everywhere: turbulent shear stress and mean flow variables

Multiphysics and multiscale revisited
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Multi-scale, but same physics: Turbulent flows (RANS, LES):

One equation solved for the mean flow 

One set of equations solved or modeled for the highly fluctuating turbulence perturbations 
(turbulent energy and dissipation, length scale, Reynolds tensor...)

Two-way coupling everywhere: turbulent shear stress and mean flow variables

Same scale, but multi-physics: Fluid-Structure interaction:

One equation solved for the fluid

One equation solved for the solid

Two-way coupling localized through the interface: wall position and wall force

Multiphysics and multiscale revisited
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How do you define a physical system?

Just the governing equations?

Then what is multiphysics coupling?

Multiphysics and multiscale revisited
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How do you define a physical system?

Equations + space/time domain + boundary/initial conditions

Multiphysics and multiscale revisited
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How do you define a physical system?

Equations + space/time domain + boundary/initial conditions

After applying a numerical method, 

Equations + space/time domain + boundary/initial conditions + discretization 

Multiphysics and multiscale revisited



BCN Notes CM

Ba
rc

el
on

a 
Su

pe
rc

om
pu

tin
g 

C
en

te
r

How do you define a physical system?

Equations + space/time domain + boundary/initial conditions

After applying a numerical method, 

Equations + space/time domain + boundary/initial conditions + discretization 

This widens up the concept of “multi-physics coupling”:

Two or more coupled problems, where at least one of the terms above varies. 

Multiphysics and multiscale revisited
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ideas…

Contact domains: 

Fluid-structure interaction

Contact and impact problems

N-bodies collisions

Heat transfer

Meshes can/cannot coincide

Multiphysics and multiscale revisited
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ideas…

Overlapping domains: 

Overset meshes and Chimera

Electromechanical cardiac model

RANS modelled turbulence

Multi-scale problems

Particles and immersed bodies

Meshes can/cannot coincide 

Multiphysics and multiscale revisited
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Issues

Coupling connectivity among MPI 
tasks 

Numerically stable coupling 
algorithms

Preconditioners for the coupled 
scheme

Time-scale disparity

Synchronous/Asynchronous schemes
Coupling different codes (multi-codes)

Multiphysics and multiscale revisited
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Coupling strategy: Fluid - Structure Interaction (FSI)

Fluid coupled with a solid

Solid deforming / moving upon the forces exerted 
by the fluid

Fluid domain changing as the solid is deformed

Mainly two strategies:

Immersed boundary method (IBM)

Arbitrary Lagrangian - Eulerian (ALE)

Multiphysics and multiscale revisited
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converged

Yes

No

Next time 

displacemen

CFD force CSD 

CFD 

converged

Yes

No

force

Next time 

displacemen

CSD idle

idle

Gauss-Seidel approach Jacobi approach

Multiphysics and multiscale revisited
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Pre-processing 

Initialize coupling 

Time loop 

  Non-linear iterations 

loop 

    Assemble matrix 

    Solve linear 

problem 

  End non-linear 

iteration loop 

End time loop 

Pre-processing 

Initialize coupling 

Time loop 

  Non-linear iterations 

loop 

    Assemble matrix 

    Solve linear 

problem 

  End non-linear 

iteration loop 

End time loop 

Gauss-Seidel approach

Multiphysics and multiscale revisited
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Pre-processing 

Initialize coupling 

Time loop 

  Non-linear iterations 

loop 

    Assemble matrix 

    Solve linear 

problem 

  End non-linear 

iteration loop 

End time loop 

Pre-processing 

Initialize coupling 

Time loop 

  Non-linear iterations 

loop 

    Assemble matrix 

    Solve linear 

problem 

  End non-linear 

iteration loop 

End time loop 

When
Jacobi approach

Multiphysics and multiscale revisited
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11

10

12

9

13

8

1 2 3

6

5

4 7

Alya-NastinAlya-Solidz

wet surface 
of solid’s code

wet surface 
of fluid’s code

Coupling strategy: FSI

Multiphysics and multiscale revisited
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1 2 3

6

5

4 7

Alya-Solidz

wet surface 

11
10

12

9
13

8

Alya-Solidz

wet surface 

Multiphysics and multiscale revisited

Coupling strategy: Contact
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