
Function

Description

Execution Environment Routines

subroutine omp_set_num_threads(num_threads)
integer num_threads

Sets the number of threads to use for subsequent parallel regions.

integer function omp_get_num_threads()

Returns the number of threads that are being used in the current parallel region.

integer function omp_get_max_threads()

Returns the maximum number of threads that are available for parallel
execution.

integer function omp_get_thread_num()

Determines the unique thread number of the thread currently executing this
section of code.

integer function omp_get_num_procs()

Determines the number of processors available to the program.

logical function omp_in_parallel()

Returns .true. if called within the dynamic extent of a parallel region

executing in parallel; otherwise returns .false..

subroutine omp_set_dynamic(dynamic_threads)
logical dynamic_threads

Enables or disables dynamic adjustment of the number of threads used to

execute a parallel region. If dynamic_threads is .true., dynamic

threads are enabled. If dynamic_threads is .false., dynamic threads

are disabled. Dynamics threads are disabled by default.

logicl function omp_get_dynamic()

Returns .true. if dynamic thread adjustment is enabled, otherwise

returns .false..

subroutine omp_set_nested(nested)
integer nested

Enables or disables nested parallelism. If nested is .true., nested

parallelism is enabled. If nested is .false., nested parallelism is

disabled. Nested parallelism is disabled by default.

logical function omp_get_nested()

Returns .true. if nested parallelism is enabled, otherwise

returns .false..

Lock Routines

subroutine omp_init_lock(lock)
integer (kind=omp_lock_kind)::lock

Initializes the lock associated with lock for use in subsequent calls.

subroutine omp_destroy_lock(lock)
integer (kind=omp_lock_kind)::lock

Causes the lock associated with lock to become undefined.

subroutine omp_set_lock(lock)
integer (kind=omp_lock_kind)::lock

Forces the executing thread to wait until the lock associated with lock is

available. The thread is granted ownership of the lock when it becomes
available.

subroutine omp_unset_lock(lock)
integer (kind=omp_lock_kind)::lock

Releases the executing thread from ownership of the lock associated

with lock. The behavior is undefined if the executing thread does not own the

lock associated with lock.

logical omp_test_lock(lock)
integer (kind=omp_lock_kind)::lock

Attempts to set the lock associated with lock. If successful, returns .true.,

otherwise returns .false..

subroutine omp_init_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

 Initializes the nested lock associated with lock for use in the subsequent

calls.

subroutine omp_destroy_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Causes the nested lock associated with lock to become undefined.

subroutine omp_set_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Forces the executing thread to wait until the nested lock associated

with lockis available. The thread is granted ownership of the nested lock

when it becomes available.

subroutine omp_unset_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Releases the executing thread from ownership of the nested lock associated

with lock if the nesting count is zero. Behavior is undefined if the executing

thread does not own the nested lock associated with lock.

integer omp_test_nest_lock(lock)
integer(kind=omp_nest_lock_kind)::lock

Attempts to set the nested lock associated with lock. If successful, returns the

nesting count, otherwise returns zero.

Timing Routines

double-precision function omp_get_wtime()

Returns a double-precision value equal to the elapsed wallclock time (in
seconds) relative to an arbitrary reference time. The reference time does not
change during program execution.

double-precision function omp_get_wtick()

Returns a double-precision value equal to the number of seconds between
successive clock ticks.

